Pyramid algorithms for barycentric rational interpolation

نویسندگان

  • Kai Hormann
  • Scott Schaefer
چکیده

We present a new perspective on the Floater–Hormann interpolant. This interpolant is rational of degree (n, d), reproduces polynomials of degree d, and has no real poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first demonstrate a close relation to Neville’s algorithm. We then derive an O(nd) algorithm for computing the barycentric weights of the Floater–Hormann interpolant, which improves upon the original O(nd) construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barycentric-Remez algorithms for best polynomial approximation in the chebfun system

Variants of the Remez algorithm for best polynomial approximation are presented based on two key features: the use of the barycentric interpolation formula to represent the trial polynomials, and the setting of the whole computation in the chebfun system, where the determination of local and global extrema at each iterative step becomes trivial. The new algorithms make it a routine matter to co...

متن کامل

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation

The barycentric form is the most stable formula for a rational interpolant on a finite interval. The choice of the barycentric weights can ensure the absence of poles on the real line, so how to choose the optimal weights becomes a key question for bivariate barycentric rational interpolation. A new optimization algorithm is proposed for the best interpolation weights based on the Lebesgue cons...

متن کامل

Some New Aspects of Rational Interpolation

A new algorithm for rational interpolation based on the barycentric formula is developed; the barycentric representation of the rational interpolation function possesses various advantages in comparison with other representations such as continued fractions: it provides, e.g., information concerning the existence and location of poles of the interpolant.

متن کامل

Barycentric rational interpolation at quasi-equidistant nodes

A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But ...

متن کامل

Comments on "A Simple and Accurate Algorithm for Barycentric Rational Interpolation"

First, I would like to thank the author of ”Comments on ’A Simple and Accurate Algorithm for Barycentric Rational Interpolation’” (hereafter referred to as ”the comments”) for their interest in my work [1]. The author of the comments points out a novel relationship between barycentric rational interpolation, the Welch-Berlekamp key equation and Gröbner bases. This could turn out to be a very pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2016